Highly Electrocatalytic H₃PO₄ Treated Copper Sulfide Counter Electrodes for Quantum Dot Sensitized Solar Cells

<u>Mohammed Panthakkal Abdul Muthalif</u>, 최영선[†] 부산대학교 (chœ@pusan.ac.kr[†])

The present study reports the effect of H_3PO_4 treatment on the surface of CuS counter electrodes to improve the photovoltaic performance and stability of quantum dot sensitized solar cells (QDSSCs). The various concentrations of H_3PO_4 treated CuS thin films were successfully grown on a conducting FTO substrate by chemical bath deposition (CBD) method. Solar cell devices were designed using CdS/CdSe photoelectrodes and H_3PO_4 treated CuS counter electrodes with a polysulfide electrolyte.

Under the illumination of one sun (AM 1.5 G, 100 mW cm⁻²), 4 ml H_3PO_4 treated CuS counter electrode based QDSSC exhibit excellent short-circuit current density, open circuit voltage, fill factor and power conversion efficiency. The improved photovoltaic parameters of QDSSCs is due to the high electrocatalytic activity of H_3PO_4 treated CuS counter electrodes.