Mechanical study of CO_2 sorption on salt-promoted MgO-CeO $_2$ under practical gas conditions in the presence of H_2O

<u>방진아</u>¹, 진성민^{1,2}, 이창하^{1,†}

¹연세대학교; ²École polytechnique fédérale de Lausanne
(leech@vonsei.ac.kr[†])

The enhancement mechanism of H_2O dissociation-promoted CO_2 sorption on the MgCeOx surface was studied through in situ DRIFTS analysis. Among solid CO_2 sorbents, MgO attracts attention due to its applicability at high pressure and intermediate temperature. Notably, it has been found that H_2O promotes sorption performance but still lacks insight into the dynamic sorption process under the corresponding conditions. Herein, the main contributor and mechanism to the CO_2 sorption in each condition were analyzed through the in situ DRIFTS results measured with the injection of a mixture gas of CO_2 , H_2O , and Ar. The adsorbed OH groups grew significantly with monodentate carbonate at the early sorption stage, leading to H_2O dissociation-promoted sorption process. This study reveals the contribution of H_2O to the performance improvement of the sorbent when applying the MgO-based CO_2 sorbent to the actual process.