Multi-objective optimization of gasoline synthesis process for economic profit and ${\rm CO}_2$ emissions

<u>정재훈</u>, 이원보, 박명준^{1,†} 서울대학교; ¹아주대학교 (mipark@ajou.ac.kr[†])

Recently the global warming issue getting attention, CO_2 utilization has been receiving great attention. Especially, reforming is considered as a great method of CO_2 utilization. By converting CO_2 to syngas, various further reactions can be achieved like methanol synthesis. And also, methanol can be reactants of various substances like di-methyl-ether (DME). CO_2 is also consumed during the reforming but CO_2 emission also occur when using energy like heating, compressing, etc. Therefore, when designing a process, consideration should be given not only to the overall benefits of the process, but also to the CO_2 that can be generated from multiple utilities. In this research, the process of synthesizing gasoline from CH_4 , CO_2 and CO_2 emissions was conducted. Since there was a trade-off between the economic profit and CO_2 emissions, the pareto optimal was searched.