Thermally stable monodispersed Ni–Co nanoparticles encapsulated with SiO_2 shell for dry reforming of methane

<u>배종욱</u>^{1,†}, 박경수^{1,2}, 권재현¹, 유지수¹, 정소윤¹ ¹성균관대학교; ²현대자동차 (finejw@skku.edu[†])

Enhanced thermal and catalytic stability of monodispersed N–Co nanoparticles with homogeneous size distribution of ~6 nm encapsulated with SiO₂ shells (NC@Si) were verified for a dry reforming of methane with CO₂ (DRM). The extents of coke formation and aggregation of N–Co nanoparticles were effectively suppressed with positive contributions of oxophilic Co species as well as by their spatial confinement effects. The optimal N₈C₂@Si with N/Co molar ratio of 4 revealed relatively higher CH₄ and CO₂ conversions of 74.1 and 83.7% at T = 800 °C without significant deactivation. A superior catalytic activity and stability of the N₈C₂@Si were attributed to the highly–dispersed oxophilic metallic cobalt oxides in monodispersed N–Co nanoparticles, which enhanced CO₂ adsorption capacity and increased thermal stability of spatially confined N–Co nanoparticles with the help of mesoporous SiO₂ shells at its optimal aging time less than 4 h.