Characterization of Ion Transport near the Electrolyte/Cathode Interface within Lithium-Ion Battery: A Molecular Dynamics Simulation Study

<u>Chi-cheng Chiu</u>[†] Department of Chemical Engineering, National Cheng Kung University (ccchiu2@mail.ncku.edu.tw[†])

To improve the performance of lithium-ion battery (LIB), various studies have been developing functional binders to reduce the electrolyte/electrode interfacial impedance, R_{int} . Here, we utilized molecular dynamics (MD) simulations to characterize L^+ transport at the liquid electrolyte/LiFePO₄ (LFP) cathode interface and the molecular effects of functional binders. Compared with conventional <u>poly</u>(vinylidene fluoride) (PVDF), L^+ -coordinating or negatively charged polymers can lower the L^+ free energy at interface and effectively reduce R_{int} . Yet, the reduction of R_{int} may be limited by the polymer chain rigidity. From non-equilibrium MD, we identified three sub-interfacial regions during the L^+ (de-)intercalation: conventional Stern and diffusive layers, and a unique L^+ depletion region. Analyses suggest that the concentration gradient and the electric field drive the L^+ transport in the Stern and diffusive layers but not in the depletion region. The combined results suggest that improving the L^+ affinity and the local mobility at interface can reduce R_{int} , where the free energy and electric potential variations play dominant roles.