Computational analysis of molecule-driven shape control of metal co-catalysts <u>이상헌</u>[†] 이화여자대학교 (sang@ewha.ac.kr[‡]) Optimization of the metal co-catalyst structure is indispensable to improving the efficiency of the photocatalyst. By performing a series of experiments and simulations, we demonstrate the effect of selective particle shape control of metal co-catalysts (Au, Ag, Cu and Pt) by the CO_2 induced gas ligands (CO_2 and CO) on photocatalytic CO_2 conversion activity and selectivity. In particular, proper interaction between the gas ligand and the metal co-catalyst surface, realized by strengthening the metal- CO_2 adsorption and weakening the metal- CO_2 adsorption, is identified as essential factor for increasing the CO_2 conversion activity. Pt and CU_2 which exhibit relatively strong interaction with gas molecules, have the improved photocatalytic CO_2 conversion activity when grown under CO_2 . In contrast, Au and Ag, which exhibit relatively weak interaction with gas molecules, have the enhanced photocatalytic CO_2 conversion activity when grown under CO_3 . This systematic understanding can be a guideline for controlling the metal co-catalyst surface structure and will maximize the photocatalytic selectivity of the CO_3 conversion.