Direct conversion of CO_2 to methanol over ZnO– ZrO_2 bimetal catalyst synthesized with different methods

Mansoor Ali, 배종욱[†] 성균관대학교 (fineiw@skku.edu[†])

Bifunctional catalysis coupling CO_2 to methanol and methanol to hydrocarbons is a promising strategy for the direct hydrogenation of CO_2 into aromatics. However, selective conversion of CO_2 and H_2 into aromatics is still challenging due to the high unsaturation degree and complex structures of aromatics. Though, there is still lack of efficient catalysts to convert CO_2 to methanol with high activity and high methanol selectivity at high temperature above $300^{\circ}\mathrm{C}$. The synergistic interaction between two components in bimetal catalysts is one of the crucial factor in determining catalytic performance. Herein, we report the $\mathrm{ZnO}\text{-}\mathrm{ZrO}_2$ bimetal catalysts synthesized with different methods to highlight the interactions between the two components in controlling the catalytic performance of catalysts. Furthermore, a tandem catalyst comprising of $\mathrm{ZnO}\text{-}\mathrm{ZrO}_2$ and $\mathrm{HZSM}\text{-}5$ used for one-pass conversion of CO_2 to aromatics.