Metal-support interaction in Ni/CeO₂-ZrO₂-Al₂O₃ catalysts and its influence on hydrogen production from ethanol steam reforming 왕명연, Lien Do-Thi, Nguyen Phu Huy, 김상윤, 신은우[†] 울산대학교 (ewshin@ulsan.ac.kr[†]) In this study, N/CeO_2 – ZrO_2 – Al_2O_3 (CZA) catalysts with different N contents and CZ to Al_2O_3 ratio were prepared by a solvent hydrothermal method for CZA support and a subsequent impregnation of different N amounts into the supports to investigate the metal–support interaction in the catalyst system and catalytic performance. Characterization of catalysts by H_2 –TPR, NH_3 –TPD, XRD, XPS, Raman, and N_2 adsorption–desorption technique revealed changes in the metal–support interaction, acidity and oxygen vacancy with different N and CZ content. XRD results showed the main phases of the supported catalysts include the N phase, which played an important role in the activity of the catalyst performance, and the interaction between N and the carrier affected the selectivity of the catalyst. The addition of N enhanced the H_2 selectivity and decreases liquid products. Larger CZ ratio created a greater number of oxygen vacancies which were beneficial to prevent the formation of carbon due to the oxygen storage capacity presented by CeO_2 . Moreover, the interaction between N and metal oxide supports resulted in more facile reduction of surface CeO_2 and also could stabilize the CZ phase.