Effects of Monoethanolamine in preparation of $V_2O_5/MPTiO_2$ catalyst on NH_3 Selective Catalytic Reduction <u>전세원</u>, 김도희[†], 송인학, 이황호 서울대학교 (dohkim@snu.ac.kr[†]) NO_X emission regulations have been strengthened and to fulfil demands for efficient NO_X removal systems, selective catalytic reduction using NH_3 as a reducing agent is considered as an effectual NO_X removal technique. In order to achieve higher NO_X conversion at low temperature, monoethanolamine (MEA) was added in preparation of $V/MPTIO_2$ catalysts. In the present study, different amount of MEA was carefully added in preparation of vanadium precursor solution. The addition of MEA demonstrates a better NOX conversion at low temperature and maintains higher NH_3 conversion over the temperature range, which indicates that standard SCR reaction proceeds with less ammonia slip. Furthermore, $V/MPTIO_2$ with MEA has a larger amount of adsorbed ammonia based on NH_3 -TPD, and more Bronsted acid sites existed compared to the traditional $V/MPTIO_2$ based on DRIFTS. From the characterizations, our research suggests that vanadium based catalysts could improve catalytic activity with larger extent of adsorbed ammonia and Bronsted acid site when MEA is added in preparation.