Direct conversion of CO_2 to hydrocarbons over bifunctional spinel oxide catalysts <u>김용석</u>, 송요한, 유영재, 양효근, 나경수[†] 전남대학교 (kyungsu_na@jnu.ac.kr[†]) Hydrogenative direct conversion of CO_2 to hydrocarbons by the combination of $CuAl_2O_4$ and iron oxide as reverse water-gas shift (RWGS) and Fischer-Tropsch (FT) catalyst, respectively, was investigated by supporting iron oxide on $CuAl_2O_4$ (i.e., $Fe/CuAl_2O_4$). This integrated catalyst enabled the direct conversion of CO_2 to large molecular weight hydrocarbons, which might occur via consecutive pathways of RWGS (CO_2 to CO) and FT (CO to hydrocarbons). The loading of iron oxide and the effect of alkali promoter have been investigated in this reaction. The higher the loading of iron oxide, the higher the CO_2 conversion and C_{2+} hydrocarbon selectivity. The introduction of potassium into $Fe/CuAl_2O_4$ catalyst significantly promoted selectivity for long-chained hydrocarbons in the range of $C_5 \sim C_{12}$ with high selectivity, and the CH_4 formation was suppressed at the same time. Depending on the composition of bifunctional spinel oxide catalysts, the C_{2+} hydrocarbon yield can increase up to 41.9%.