Flexible asymmetric supercapacitors using $g-C_3N_4$ quantum dots and $MnCO_3$ on carbon cloth electrode

<u>류적</u>, 김소음, 최원묵[†] 울산대학교 (wmchoi98@ulsan.ac.kr[†])

Numerous efforts have been made to investigate manganese carbonate as active materials in the field of energy storage. To explore the full use of $MnCO_3$ for supercapacitor in aqueous electrolyte, a facile hydrothermal method was developed to synthesis $g-C_3N_4$ quantum dots $/MnCO_3/carbon$ cloth composites (q-MC//CC) as a binder-free electrode. With the adding C_3N_4 quantum dots in $MnCO_3$, the superior electrochemical performance was achieved, including high capacitive properties of 1001.9 F/g at 1 A/g and a good cycling stability of 96% retention after 5000 cycles. In addition, an asymmetric supercapacitor with a-MC//CC as positive electrode and CC as negative electrode yielded a high energy density of 27.1 Wh/kg at a power density of 500 W/kg. The synthetic strategy provides a fine reference for metal carbonate structures and the results indicate that q-MC//CC electrode can be a promising material for energy storage applications.