Direct Regeneration of Nanoconfined $LiAlH_4$ in N-functionalized Scaffold for Reversible Hydrogen Storage 조용준, Sichi Li¹, Vitalie Stavila², Brandon C. Wood¹, 조은선[†] KAIST; ¹Material Science Division, Lawrence Livermore National Laboratory; ²Sandia National Laboratories (escho@kaist.ac.kr[†]) LiAlH₄ has garnered considerable interests as a high capacity hydrogen storage material. In spite of this advantage, the inferior reversibility of LiAlH₄ severely hinders from taking full advantage of such high capacity. The direct regeneration of LiAlH₄ under pressurized hydrogen without the use of solvents has rarely been done. Here, we prepared nanoconfined LiAlH₄ in N-functionalized/non-functionalized mesoporous carbon scaffold via the solvent infiltration for sustainable high-performance hydrogen storage. The change of hydrogen desorption properties is studied for the nanoconfined LiAlH₄ to investigate an effect of carbon scaffold. LiAlH₄@NCMK-3 exhibits a reduction of the desorption onset temperature and the partial recovery of LiAlH₄. A theoretical study revealed that there is a strong Li-N interaction induced by the N-functionalities, offering the thermodynamic tuning of the nanoconfined LiAlH₄ system. This suggests that metastable hydrides, which have not been considered as candidates for a practical system, could also be a viable alternative for a sustainable hydrogen storage platform.