Kinetic selectivity of SF₆ in hydrate-based SF₆ separation <u>고결</u>, 서용원[†] 울산과학기술원 (ywseo@unist.ac.kr[†]) This study investigated hydrate-based gas separation (HBGS) to capture sulfur hexafluoride (SF₆), one of the most potent greenhouse gases, from gas mixtures with a primary focus on its kinetic selectivity. A time-dependent SF₆ selectivity in the hydrate phase during hydrate formation was examined with SF₆ (50%) + N₂ (50%) gas mixtures at 8.0 MPa and 275.15 K. Enclathrating behaviors of SF₆ and N₂ in the hydrate phase were analyzed by observing the changes in the intensity and area of enclathrated SF₆ and N₂ molecules using in-situ Raman spectroscopy. Furthermore, gas uptakes and changes in SF₆ compositions in the vapor phase were measured during hydrate formation to demonstrate the rate of hydrate formation and time-dependent selectivity of SF₆ in the hydrate phase. SF₆ had a higher thermodynamic selectivity in the hydrate phase compared to N₂, but SF₆ was not kinetically selective in the hydrate phase during the hydrate formation. The experimental results obtained in this study would be useful for designing and operating the hydrate-based SF₆ separation process from SF₆ + N₂ gas mixtures.