Solubility for the CO_2 + vinyl octanoate and CO_2 + vinyl pivalate binary systems at high pressures 변헌수[†], 박철웅¹, 동기현¹ 전남대학교; ¹전남대학교 화공생명공학과 (hsbyun@inu.ac.kr[†]) Vapor + liquid phase behavior for the binary (CO_2 + vinyl octanoate) and (CO_2 + vinyl pivalate) systems at various temperatures from (313.2 K to 393.2 K) and pressures up to 21 MPa have been investigated by static-type at high pressure. The solubility curve of carbon dioxide in the (CO_2 + vinyl octanoate) and (CO_2 + vinyl pivalate) systems decrease as the temperature increases at a constant pressure. The (CO_2 + vinyl octanoate) and (CO_2 + vinyl pivalate) systems correlate with the Peng-Robinson equation of state including two (k_{ij} , n_{ij}) adjustable parameters. The critical properties of vinyl octanoate and vinyl pivalate were predicted with the Joback-Lyderson group contribution and Lee-Kesler method. RMSD for the (CO_2 + vinyl octanoate) [k_{ij} =0.065, n_{ij} =-0.012] systems using two parameters determined at 353.2 K were 5.89 % and 5.76 %, respectively. RMSD for the (CO_2 + vinyl octanoate) and (CO_2 + vinyl pivalate) systems by two adjustable parameters determined at each temperature were 3.73 % and 3.77 %, respectively.