Enhanced performance of all inorganic strontium incorporated CsPbI₂Br based perovskite solar cells in ambient condition PATIL JYOTI¹, 홍창국^{2,3,†} ¹Chonnam National University; ²전남대학교; ³응용화학공학부 (hongek@chonnam.ac.kr[†]) In the present study, we fabricated an air processed strontium (Sr^{2+}) partially replaced Pb in inorganic CsPbl2Br based inorganic perovskite solar cells in ambient condition. The morphology, crystallinity, absorption, elemental composition and photoluminescence of the air processed CsPb1- $_{\rm X}$ Sr $_{\rm X}$ I2Br were studied systematically. The Sr providing a passivating effect on the surface of the perovskite. The perovskite solar cell using optimal concentration of Sr (x=0.02) doped CsPbI2Br achieved a 16.54 % power conversion efficiency, open circuit voltage ($V_{\rm OC}$) of 1.318 V, a short circuit current density ($J_{\rm SC}$) of 16.30 mAcm⁻² and fill factor (FF) of 77 % which is much higher than controlled CsPbI2Br based inorganic PVSC. Our thermal analysis results showed an excellent thermal stability of 200 hours at 60 °C thermal annealing. These results would provide a novel pathway to improve highly efficient and stable inorganic PVSCs.