Improvement of Long-term Performance Stability of Molten Carbonate Fuel Cell Using ${\rm ZrO_2}$ ALD Coated Cathode <u>김도형</u>^{1,2}, 김기영¹, 임성남¹, 우주영¹, 한학수², 송신애^{1,†} ¹한국생산기술연구원; ²연세대학교 (sasong@kitech.re.kr[†]) Molten carbonate fuel cell (MCFC) is a high-temperature fuel cell for power plants. Since MCFC is operated at above 600 °C, an inexpensive catalyst can be used instead of Pt, but the lifetime of MCFC is limited due to the degradation of components. The cathode of MCFC has a porous structure for contacting gas and electrolyte. The reaction sites are reduced by grain growth and Ni dissolution during long-term operation. Therefore, to improve the long-term performance stability of MCFC, a coating to the cathode surface is proposed with preventing the grain growth and the Ni dissolution. In this study, a ZrO₂ coated cathode was fabricated by atomic layer deposition to improve the long-term performance stability of MCFC. To verify the effect of ZrO₂ coating on the performance, a single cell was fabricated with an uncoated cathode and a ZrO₂ coated cathode, respectively, and operated for about 2,000 hours at 600 °C with a current density of 150 mA/cm². During operation, the cell using the ZrO₂ coated cathode coated shows a more stable performance than the cell using the uncoated cathode. It is also confirmed that the degradation rate of cell performance is dramatically decreased.