CO₂ sorption and regeneration properties of the potassium-based sorbent using MCC for post-combustion CO₂ cpature

<u>강후인</u>, 조민선, 이수출, 채호진, 류민영, 김세정, 우진혁, 김재창[†] 경북대학교 (kjchang@knu.ac.kr[†])

Carbon dioxide (CO_2) is a major greenhouse gas that is released into the atmosphere by the combustion of fossil fuels, and it causes global warming. Thus, It is necessary to reduce CO_2 . CO_2 can be removed from flue gases using a dry sorbent. Micro-cel C (MCC) is one of the representative materials that is used to design the potassium-based sorbent for strength of the sorbent. In this study, to investigate the properties of the potassium-based sorbent (KMC) using MCC, the KMC sorbent was prepared by using a typical impregnation method. KMC sorbent showed a low CO_2 capture capacity of 21.6 mg CO_2 /g sorbent. This is because a by-product such as a $K_2Ca(CO_3)_2$ phase was generated after calcination of the sorbent, and then the content of the active material (K_2CO_3) was lost. It can be confirmed that controlling the content of K_2CO_3 is a very important factor for ability of the sorbent. From these results, we suggest the method to solve the problem of deactivation of the sorbent.