Fast and Scalable Hydrodynamic Synthesis of Defect-Free Graphene/MnO₂ Nanocomposites

<u>정재민</u>, 서동혁, 곽병은, 최봉길¹, 김도현[†] 한국과학기술원; ¹강원대학교 (dohyun.kim@kaist.edu[†])

The integration of metal oxide and carbon material provides a great potential for the high energy and power density of supercapacitor, but the scale-up of fabrication process of such composite materials still remains a challenge. We report a fast, scalable, and one-pot hydrodynamic synthesis for the preparation of ion conductive and defect-free graphene from graphite and $\rm MnO_2/graphene$ nanocomposites. The use of this hydrodynamic method using Taylor-Couette flow allows us to efficiently shear-exfoliate graphite into large quantities of high-quality graphene sheets. Deposition of $\rm MnO_2$ on graphene followed in a fluidic reactor in 10 min. The prepared $\rm MnO_2/graphene$ nanocomposite shows an outstanding electrochemical performance, such as a high specific capacitance of 679 F/g at 25 mV/s, and a high rate capability of 74.7% retention at an extremely high rate of 1000 mV/s.