Graphene Hollow Capsule Based Closed Cellular Network for Ultralight, Strong, and Superelastic Materials

<u>오민준</u>, 여선주¹, 전현민, 이민환², 배중건², 김예슬, 박경진³, 이승우³, Daeyeon Lee⁴, 원병묵, 이원보², 권석준¹, 유필진[†] 성균관대학교; ¹KIST; ²서울대학교; ³고려대학교; ⁴University of Pennsylvania (pjyoo@skku.edu[†])

Advanced materials with low density and high strength impose transformative impacts in the construction, aerospace, and automobile industries. These materials can be realized by assembling well-designed building units (BUs) into interconnected structures. This study uses a hierarchical design strategy starting from the functionalized graphene oxide nanosheets at the molecular- and nanoscale, leading to the microfluidic fabrication of solid bubbles at the microscale. Then, bubbles are assembled into centimeter-scale 3D structures. Subsequently, these structures are transformed into self-interconnected and reinforced closed-cellular network. The 3D graphene structure exhibits the Young's modulus above 300 kPa with a light density of 7.7 mg cm⁻³ and sustaining up to 87% of the compressive strain benefiting from efficient stress dissipation through the complete space-filling closed-cellular network. The method opens a new pathway for designing lightweight, strong, and superelastic materials.