Improved Efficiency and Stability of Quasi-2D Tin-Based Perovskite Solar Cells with Formamidinium Thiocyanate Additive

<u>김홍기</u>^{1,2}, 이윤호^{3,2}, 오준학^{2,†}

¹포항공과대학교; ²서울대학교;

³나노기반 소프트일렉트로닉스 연구단 (CASE)

(ioonhoh@snu.ac.kr[†])

Tin-based perovskite solar cells have been considered to be promising alternatives for toxic Pb-based perovskite solar cells due to their comparable optoelectronic properties as well as relatively lower toxicity. However, their poor oxidation stability has been a main obstacle for efficient tin-based perovskite solar cells. Herein, we fabricated quasi-2D tin-based perovskite solar cells with improved stability and studied the effects of formamidinium thiocyanate (FASCN) additive which can interact with Sn²⁺ ion to suppress oxidation. The carrier density of the device with FASCN was reduced to 6.67×1015 cm⁻³ from 2.17×1016 cm⁻³. Moreover, morphological improvement was observed with FASCN. The best-performing sn-based perovskite solar cells showed the highest effciency of 8.17%, which retains over 90% of its initial efficiency over 1000 hours in a glovebox filled with nitrogen. These results demonstrate a viable approach for efficient tin-based perovskite solar cells.