$\label{eq:solution} \begin{array}{l} \mbox{Modification of V_2O_5-WO_3/TiO_2 Catalytic Ceramic Sheet Filters for Selective Catalytic Reduction of NO_x with NH_3 \\ \end{array}$

Phule Ajit, 최주홍^{1,†}, 김진형², 김인수², 김성수³ 경상대학교; ¹경상대학교 화학공학과; ²경성산업(주); ³창원대학교 (ihchoi@gnu.ac.kr[†])

The selective catalytic reduction of NO_xwith NH₃ over V₂O₅-WO₃/TiO₂ (VWT) based catalyst is the best benchmark technique to reduce NO_x emissions efficiently from stationary and mobile sources. Improvement of VWT catalytic sheet filter has been achieved by using a dip coating method with varied catalyst coating solution concentration (10-30wt%) and discussed their NO conversion at reaction temperature 220-380 °C. NO conversion from 50% (BM10SF) to >90% (BM25SF and BM30SF) with N_x leakage <50 ppm at 280-340 °C temperature has been achieved. Further, we have modified the TiO₂ with polymer particles by ex-situ and in-situ preparation methods. We observed the effect of modified TiO₂ by in-situ and ex-situ methods on the NO_x reduction performance of the catalytic SF. Effect of a Niobium doping on the VWT catalytic SF NO_x performance studied with varied Nb-content (1–4 wt%). The pressure drop value was low <50 at face velocity 2 cm/s decreased to <10 at 2 wt% Nb-content doped VWT SF which shows better NO conversion i.e. 95–97% at 260–340 °C.