Forming Fused Aromatic Organic Networks for Energy Applications

백종범[†] UNIST

(jbbaek@unist.ac.kr[†])

Stable fused organic networks have been designed and synthesized. They have uniformly distributed heteroatoms, 1 holes with heteroatoms, 2 and transition metal nanoparticles in the holes. 3 The structures were confirmed using various characterization techniques. Based on the stoichiometry of 2D layered structures, they were, respectively, designated C2N, C3N, C4N, and M@C2N (M = Co, Ni, Pd, Pt, Ru). Furthermore, robust three-dimensional (3D) cage-like organic networks have also been constructed and they show high sorption properties. 4,5 The results suggest that these newlydeveloped robust fused aromatic 2D and 3D organic networks offer greater opportunities for energy applications.

References:

- [1] Mahmood, et al. PNAS 2016, 113, 7414.
- [2] Mahmood, et al. Nat. Commun. 2015, 6, 6486.
- [3] Mahmood, et al. Nat. Nanotech. 2017, 12, 441.
- [4] Bae, et al. Nat. Commun. 2017, 8, 159-Highlighted in Nat. Nanotech. 2018, 13, 4.
- [5] Mahmood, et al. Angew. Chem. Int'l Ed. 2018, 57, 3415.