The effect of $g-C_3N_4$ precursors on photocatalytic activity enhancement of water-dispersible porous $g-C_3N_4$ photocatalysts

<u> 웬티킴안</u>, 신은우^{1,†}, Pham Thanh-Truc² 울산대학교; ¹울산 대학교; ²HCMC University of Technology and Education (ewshin@ulsan.ac.kr[†])

At present, graphitic carbon nitride $(g-C_3N_4)$ is considered as one of the most well-known metal-free photocatalyst. $g-C_3N_4$ can be prepared using nitrogen-rich precursors such as dicyandiamide (DCDA), melamine, urea and thiourea. In this study water-dispersible porous $g-C_3N_4$ photocatalyst were prepared from bulk $g-C_3N_4$ by a chemical oxidation method and their photocatalytic activity was examined under visible-light irradiation. Bulk $g-C_3N_4$ was obtained by different precursors in a muffle furnace at 550° C for 4 hours under air condition. Properties of bulk and porous $g-C_3N_4$ materials were characterized by FE-SEM, XRD, FT-IR, XPS, BET and UV-Vis absorption spectra. Porous $g-C_3N_4$ photocatalyst showed a high photocatalytic degradation rate of methylene blue than bulk $g-C_3N_4$. The improvement of adsorption ability in porous $g-C_3N_4$ are responsible for the high photocatalytic activity of porous $g-C_3N_4$. Moreover, the existence of sulfur in thiourea caused the different interaction in the preparation, resulting in a high activity.