Methane Chlorination with Chlorine Molecules using Zeolite Catalysts: Effects of Si/Al Ratios and Framework Types 권승 E^1 , 박성현 1 , 최유열 1 , 채호정 2,3 , 나경수 1,† 1 전남대학교; 2 한국화학연구원; 3 과학기술연합대학원대학교 (kyungsu na@chonnam.ac.kr †) Methane (CH₄) chlorination with chlorine molecule (Cl₂) can produce various chlorinated products via C-H bond activation in CH₄. This reaction can occur spontaneously with irradiation of UV light even in the absence of a catalyst, which follows a free radical-mediated chain reaction mechanism. Therefore, the various products can be formed with a statistical thermodynamic distribution. In this work, CH₄ chlorination is controlled by using HY and MFI zeolites with various Si/Al ratios under various reaction conditions in order to break the thermodynamic product distribution and thereby produce a desired mono-chlorinated product (i.e., CH₃Cl). The results demonstrated that the framework type of zeolite and its Si/Al ratio could control the CH₄ conversion, CH₃Cl selectivity, and hence CH₃Cl yield under various reaction conditions. In particular, systematic correlations between the catalyst properties and CH₃Cl yield were constructed. All the zeolite catalysts suffered from framework dealumination by HCl produced during the reaction. The details of CH₄ chlorination and the results are going to be addressed in this poster.