New Organocatalysts for Synthesis of Cyclic Carbonates Capable of Operating at Ambient Temperature and Atmospheric CO_2 Pressure <u>성영주</u>, 조승연, 김영조[†] 충북대학교 (ykim@chungbuk.ac.kr[†]) The coupling reaction of CO_2 and epoxides yielding cyclic carbonates, used as polar aprotic solvents, electrolytes for lithium—ion batteries, monomers for polymerizations, and pharmaceutical intermediates, is one of the most active research areas of CO_2 conversion due to its atom economy (no side products) and broad applicability. Even though organocatalysts have many advantages in terms of cost, toxicity, and accessibility, compared to metal-based catalysts, they generally require harsh reaction conditions such as high temperatures (> 100 °C), high CO_2 pressures (> 10 bar), and high catalyst loadings (> 5 mol %) for the efficient conversion. To date, several active organocatalysts for this coupling reaction under mild conditions have been reported in the literature; however, the development of efficient organocatalysts capable of operating at ambient temperature and atmospheric CO_2 pressure is clearly a difficult task and just a few examples are known. The detailed synthesis, characterization, and catalytic activities of new phenol-based organic compounds will be discussed.