Linear α -olefin production from CO and CO $_2$ over zinc ferrite catalysts: effect of Na- and K- promoters <u>양선규</u>^{1,2}, 이성우¹, 한승주¹, 이관영², 김용태^{1,†} ¹한국화학연구원; ²고려대학교 (vtkim@krict.re.kr[‡]) The Paris Agreement on reducing greenhouse gases has drawn a lot of attention in carbon capture and utilization (CCU). Carbon dioxide can be transformed into oxygenates and hydrocarbons through hydrogenation, where a reverse water gas shift (rWGS) is followed by a Fischer-Tropsch (FTS) reaction. We could convert CO_2 into linear alpha-olefins (α -olefins), which is one of valuable chemical intermediates. Iron based catalysts are typically known to be active in both rWGS and FTS reaction. Composition of iron species is important in determining the overall catalytic performance, where alkali metals can act as a promoter for each reaction. In this study, we hypothesize that alkali metals affect the reaction rates of CO and CO_2 differently. To elucidate this, we synthesized Na- and K-added zinc ferrite catalysts and measured different reaction rates with H_2 to CO and CO_2 ratio $(H_2/(CO+CO_2))$ and CO to CO_2 ratio (CO/CO_2) . We have obtained a maximum α -olefin selectivity (51.5 %) in the range C_2-C_{32} at 63.6% CO conversion and 23.6% CO_2 conversion at 340 °C and 2.0 MPa for 200 hours continuous reaction.