## Direct ${\rm CO}_2$ hydrogenation to formic acid using carbon nitride in neutral conditions

<u>이주형</u>, 이재성<sup>†</sup> 울산과학기술원 (jlee1234@unist.ac.kr<sup>†</sup>)

Formic acid is a molecule that can be synthesized from  $CO_2$  hydrogenation and is considered as a stable and safe  $H_2$  storage medium with a large volumetric hydrogen capacity. Moreover HCOOH is easily decomposed to  $H_2$  and  $CO_2$  on Pd catalysts under mild conditions without CO evolution.

Graphitic carbon nitride is 2 dimension structure.  $g-C_3N_4$  is applied as a support of the Pd catalyst for direct HCOOH synthesis by  $CO_2$  hydrogenation under neutral conditions. The high  $CO_2$  affinity of  $g-C_3N_4$  is responsible for the enhanced catalytic activity and stability relative to the inert support such as a carbon nanotube.

The total Pd time yield of  $1.4\text{Pd/g-C}_3\text{N}_4$  is 12 times higher than that of Pd/CNT with a similar Pd particle size. Notable, no HCOOH species was detected in the reaction solution when bare  $g-C_3\text{N}_4$  was used without Pd. Since  $H_2$  is activated on the Pd surface, HCOOH formation reaction should take place at the interface with  $g-C_3\text{N}_4$ , where  $CO_2$  activation occurs.