A High-Capacity, Reversible Liquid Organic Hydrogen Carrier: H_2 -Release Properties and an Application to a Fuel Cell <u>장문정</u>^{1,2}, 조영석¹, 신병수³, 손현태¹, 정향수¹, 장성철¹, 강정원³, 윤창원^{1,†} 1 한국과학기술연구원; 2 과학기술연합대학원대학교; 3 고려대학교 (cwvon@kist.re.kr[†]) Hydrogen storage in the form of a liquid chemical is an important technology to bridge the gap between sustainable hydrogen production and utilization with a fuel cell. In the presentation, a novel liquid organic hydrogen carrier (LOHC), a mixture of biphenyl and diphenylmethane, is demonstrated. The presented material is capable of storing and releasing molecular hydrogen with 6.9 wt% and 60 g- H_2 L⁻¹ of gravimetric and volumetric hydrogen storage capacities, respectively. The as-presented LOHC stores molecular hydrogen with Ru/Al₂O₃, producing LOHC- H_2 . The formed LOHC- H_2 then releases molecular hydrogen with a dehydrogenation conversion of >99% in the presence of Pd/C. In addition, molecular hydrogen released is found to be >99.9% purity. Less than 1% of the material is lost after consecutive and nine times cyclic tests of hydrogenation and dehydrogenation. Finally, a dehydrogenation system is designed and operated in conjunction with a polymer electrolyte membrane fuel cell, generating ca. 0.5 kW of electrical power in a continuous manner.