Highly Conductive EG₃-MOP/PEDOT:PSS Composite for Supercapacitor Electrodes $\underline{ 노의진}^{1,2}$, Shah Syed Fawad Ali^{1,3}, 김지현⁴, 이병훈⁴, 김현욱^{1,2,†} ¹한국에너지기술연구원; ²충남대학교; ³University of Science and Technology; ⁴이화여자대학 교 (hyunuk@kier.re.kr[†]) Supercapacitors have drawn great attention as emerging energy storage devices because of their high power density and long cycle life. In comparison with Li ion battery, however, their energy density is quite low because of low electric conductivity and physical adsorption of electrolytes. To address this issue, novel electrodes with high electric conductivity should be developed. Herein, we reports a novel conductive EG_3 -MOP(Cu)/PEDOT:PSS composite for a supercapacitors electrode. The conducting polymer, PEDOT:PSS is well blended with EG_3 -MOP(Cu) with a nanometer cavity, which EG_3 -MOP(Cu) works as binders to precipitate the PEDOT:PSS. The thin film of EG_3 -MOP(Cu)/PEDOT:PSS composite showed high electric conductivities of around 200 S/cm. In this presentation, details of the electrochemical properties for EG_3 -MOP(Cu)/PEDOT:PSS composites will be presented.