Layered hexagonal NCo_2O_4 nanoplates as electrode material for methoxycyanoethane detection in water samples <u>장광수</u>, 김은비, 압둘라, 알람샤바즈, 피자히라미아, 사디아아민, 신형식[†] 전북대학교 (hsshin@ibnu.ac.kr[†]) This work demonstrates a simple and effective hydrothermal synthesis of layered binary metal oxides of nickel-cobalt (NCo_2O_4) for the successful realization of sensing application against methoxycyanoethane. The synthesized NCo_2O_4 were comprised of stacked layered hexagonal nanoplates (HNPs) which were extensively characterized to confirm their structural, compositional and optical properties. The composition, unique layered hexagonal nanoplates morphology, and a high surface area with good pore volume, made NCo_2O_4 HNPs as the most promising electrode material. The synthesized NCo_2O_4 HNPs based electrode exhibited the reproducible sensitivity of ~ 70.429 mA μ MT $^1 \cdot cm^{-2}$, and limit of detection ~ 6.6 nM with the correlation coefficient (R) of ~ 0.9827 . The obtained results clearly reflected that the synthesized NCo_2O_4 HNPs is promising low cost material for sensor application.