Guest distributions and dissociation behaviors of CH₄ hydrates in the presence of Namontmorillonite (Na-MMT)

<u>이준섭</u>, 서용원[†] UNIST (ywseo@unist.ac.kr[†])

 CH_4 hydrates are crystalline compounds that form at high pressure and low temperature and have a large potential of future clean energy resources. In addition, CH_4 hydrates show self-preservation effect, which means that CH_4 hydrates are not fully dissociated below a thermodynamic equilibrium line and 273.15 K. Recently, it was reported that the presence of MMT can affect cage occupancy of CH_4 hydrate. However, the dissociation behavior of CH_4 hydrate in presence of MMT has not been well studied. In this study, the effect of Na-saturated MMT on the thermodynamic equilibria of CH_4 hydrate was measured. The cage occupancy of CH_4 hydrates with different MMT concentrations were analyzed using ^{13}C NMR. In addition, the hydrate dissociation behaviors of self-preservation guest (CH_4) and non-self-preservation guest (CH_5) in the presence of MMT were observed by collecting temperature-dependent powder X-ray diffraction (PXRD) patterns. The results demonstrated that Na-MMT does not affect three-phase equilibria of CH_4 hydrates, but can contribute to retarding the dissociation of CH_4 hydrates below 273.15 K.