Carbon dioxide reforming of methane using CeO₂, ZrO₂, and Ce-ZrO₂ promoted Ni-MgO catalysts for syngas production: Effect of Ce-Zr ratio <u>김범준</u>, 노현석[†] 연세대학교 (hsroh@yonsei.ac.kr[†]) ZrO_2 , CeO_2 , and $Ce-ZrO_2$ promoted Ni-MgO catalysts were prepared by a one-step coprecipitation method. The synthesized catalysts were applied to the dry reforming of methane. Catalytic reaction was carried out at 800 °C and a gas hourly space velocity (GHSV) of 720,000 h⁻¹ was used to screen the catalytic performance. The physicochemical properties of the catalysts were investigate using various techniques such as BET, XRD, TPR, H₂-chemisorption, and CO_2 -TPD. Among the prepared catalysts, the Ni-MgO-ZrO₂ catalysts exhibited the highest CH₄ conversion. This result is mainly due to the easier reducibility, high Ni dispersion, and high specific surface area.