Investigation of the Mechanism and Kinetics of Paclitaxel Extraction from Taxus chinensis

<u>조예지</u>, 김진현^{1,†} 공주대학교 천안캠퍼스; ¹공주대학교 (jinhyun@kongju.ac.kr[†])

Abstract

Solid-liquid extraction of paclitaxel from *Taxus chinensis* has been investigated to understand the effect of temperature and solvent concentration on mechanism and kinetics of extraction. The paclitaxel concentration-time data were analyzed using a second-order kinetic model to determine extraction constant. A diffusion model was utilized to determine diffusion coefficient taking into account of both washing and diffusion phases together. Extraction temperature was observed to show a significant effect on paclitaxel yield, extraction rate and effective diffusion coefficient. The thermodynamic analysis showed that the enthalpy change (ΔH^0) and entropy change (ΔS^0) were both positive, while the Gibbs free energy change (ΔG^0) was negative and decreased when increasing the temperature. Thus, the extraction was more feasible when using a higher temperature.

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2015016271).