Rapid Flame-processed Metal Oxide Electron Transport/Selective Layers for Organic-Inorganic Hybrid Solar Cells

<u>김정규</u>[†] 성균관대학교 화학공학/고분자공학부 (legkim@skku.edu[†])

Mesoporous ${\rm TiO_2}$ nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous ${\rm TiO_2}$ NP films for these solar cells are fabricated by annealing ${\rm TiO_2}$ paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast thermal treatment of ${\rm TiO_2}$. Flame has a broad tunable temperature range; therefore, flame has an intrinsic temperature field with a large gradient. Hence, flame treatment, when coupled with FTO glass cooling, could provide the desired temperature field for processing ${\rm TiO_2}$ films on FTO. Thus, the flame annealing of ${\rm TiO_2}$ paste can be a promising approach for fabricating PSCs with enhanced charge transport performance. In addition, a sol-flame doping process to introduce Co dopant into ${\rm TiO_2}$ will be introduced. Ultra-fast flame-processed Co-doping of ${\rm TiO_2}$ solves the J-V hysteresis problem and increases the power conversion efficiency of both mesoscopic and planar PSCs.