Facile synthesis of 3D hexagonal-like CuCo₂O₄ nanotubes for methanol oxidation application

Diane Clare Tiongco, Jadhavharsharaj Sayaji, 서정길[†] 명지대학교 (igseo@miu.ac.kr[†])

Transition metal oxides have become one of the most promising alternative energy storage materials for exhibiting high electrochemical activity and stability. In this study, a simple, a one-step solvothermal synthesis of hollow ${\rm CuCo_2O_4}$ nanotubes was developed for methanol oxidation application. ${\rm CuCo_2O_4}$ nanotubes exhibited superior electrochemical performance in terms of capacity and cycling capability, with 95 mA/cm 2 and 85% retention rate after 1000 cycles, respectively. Given that the synthesis of ${\rm CuCo_2O_4}$ nanoparticles involves a facile and cost-effective technique, the present approach thus opens a new era to novel materials for large-scale processes in different electrochemical applications. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning(NRF-2016R1C1B2008694).