<u>유광선</u>, 안화승^{1,†} 인하대학교; ¹인하대 (whasahn@inha.ac.kr[†])

The metal-organic frameworks [MOF-525, $Zr_6O_4(OH)_4(TCPP-H_2)_3$; MOF-545, $Zr_6O_4(OH)_4(TCPP-H_2)_2$], have been synthesized and conducted for CO_2 adsorption. MOF-525 and -545 are composed of porphyrin linked by either $Zr_6O_4(OH)_4$ cuboctahedral units (MOF-525) or $Zr_6O_8(H_2O)_8$ unit (MOF-545). The synthesized MOFs were characterized by X-ray powder diffraction (XRD), N₂ adsorption-desorption isotherm at 77 K, and scanning electron microscopy (SEM) measurements. The CO_2 adsorption amount and BET surface area of both synthesized MOFs are up to 61.7 mg g⁻¹ (MOF-525: 2325 m² g⁻¹) and 72.3 mg g⁻¹ (MOF-545: 2040 m² g⁻¹) at 298 K/1 bar. Additionally, both porphyrin containing MOFs show excellent stability under aqueous and organic conditions.