Effects of alkali metal carbonates and nitrates of MgO-based sorbents for CO₂ capture at middle temperatures and high pressures

<u>임호영</u>, 이수출, 황병욱, 이중범¹, 김재창[†] 경북대학교; ¹전력연구원 (kichang@knu.ac.kr[†])

We investigated the effects of alkali metal carbonates and nitrates on CO_2 capture capacities of MgO-based sorbents at middle temperatures and high pressures. We prepared by wet-mixing of MgO-based sorbents promoted with alkali metal carbonates and nitrates or alkali metal nitrates. The CO_2 capture capacity of MgO-based sorbents with K_2CO_3 and $(Na-K)NO_3$ was high of approximate 500 mg CO_2/g sorbent at 300°C and 20 atm. However, the CO_2 capture capacity of the sorbent decreased rapidly from 500 mg CO_2/g sorbent to 60 mg CO_2/g sorbent during 3 cycles. On the other hand, the MgO-based sorbents with only $(Na-K)NO_3$ showed a significant CO_2 capture capacity (680 mg CO_2/g sorbent), which was 70wt% of theoretical CO_2 capture capacity (990 mg CO_2/g sorbent at 20 atm and the sorbent maintained the CO_2 capture capacity about 300 mg CO_2/g sorbent during 5 cycles. It was thought that K_2CO_3 was contributed to deactivation properties, resulting from the sintering of the sorbents. In this study, we will discuss the mechanism of CO_2 sorption and the effects of alkali metal carbonates and nitrates using TPD, XRD, FE-SEM and BET in detail.