Development of K_2CO_3 -based dry sorbents using SnO_2 and $LiAlO_2$ for post-combustion CO_2 capture

<u>조민선</u>, 이수출, 채호진, 이중범¹, 김재창[†] 경북대학교; ¹한전 전력연구원 (kjchang@knu.ac.kr[†])

Gamma alumina (γ -Al₂O₃) is commonly used as a support or an additive material to design the ideal alkali metal-based sorbent. However, potassium-based sorbent using γ -Al₂O₃ was deactivated due to the formation of by-product such as KAl(CO₃)(OH)₂ during CO₂ sorption. To overcome this problem, development of novel potassium-based sorbent is required using new supports or additive materials instead of γ -Al₂O₃. In this study, potassium-based dry sorbents using new supports or additive materials such as SnO₂ and LiAlO₂ were developed and investigated at a low temperature range between 60°C and 200°C. And the structure changes of the potassium-based sorbents were investigated by power X-ray diffraction. These sorbents show high CO₂ capture capacities (89–94mg CO₂/g sorbent). In addition, these high CO₂ capture capacities are maintained during multiple cycles even at a low regeneration temperature of 200°C.