Mechanistic Study of CO₂ Adsorption and Desorption on Li₄SiO₄

Lithium orthosilicate (Li₄SiO₄) is considered as one of the promising material for high temperature CO₂ capture. However, there is no clear understanding about the reaction mechanisms for adsorption and desorption processes, which include the formation of two solid phases (i.e. Li₄SiO₄(s) + CO₂(g) \leftrightarrow Li₂SiO₃(s) + Li₂CO₃(s)). In this study, the CO₂ adsorption and desorption mechanisms were investigated by density functional theory calculation. In the adsorption process, we explored the reaction pathways for the formation of thin bilayer structure consisting of Li₂CO₃ (above) and Li₂SiO₃ (below). After

the thin bilayer formation, thermal diffusion of Li^+ and O^{2-} enabled the further reaction to occur and made a double shell for complete adsorption. In the desorption process, we observed the successive formation of Li_4SiO_4 nuclei at the Li_2CO_3 - Li_2SiO_3 interface, which was induced by the desorption of CO_2 from Li_2CO_3 layers. The detailed reaction energetics on each step were confirmed by Gibbs free energy calculation. These findings into underlying mechanisms for CO2 capture will provide a way to improve the catalytic performance for Li_4SiO_4 -based sorbents at high temperature.