Large scale prduction of macroporous Ti-MoO₂ powders and their application for partial oxidation of *n*-dodecane

<u>임경민</u>, 김진수[†] 경희대학교 (jkim21@khu.ac.kr[†])

Recently, MoO_2 has attracted a lot of attention as reforming catalyst for hydrocarbons such as a surrogate of gasoline and jet-A fuel, due to its high resistance to coking, high thermal stability and high sulfur tolerance. However, the phase stability of MoO_2 is very limited at the narrow window of O_2/C ratio for partial oxidation of hydrocarbon. Ti^{4+} has been used as a dopant to improve stability of MoO_2 . In this study, macroporous Ti doped MoO_2 powders were directly produced by ultrasonic spray pyrolysis using polystyrene (PS) beads as templates. Macroporous Ti- MoO_2 powders were characterized by XRD, HR-SEM, EDX and BET. To evaluate catalytic activity of macroporous Ti- MoO_2 powders, partial oxidation of n-dodecane was performed.