Property Correlation and Heat Exchanger Design for Section III of Sulfur-Iodine (SI) Process

<u>이평종</u>, 강경수¹, 배기광¹, 강정원², 박병흥[†] 한국교통대학교; ¹한국에너지기술연구원; ²고려대학교 (b.h.park@ut.ac.kr[†])

The Sulfur – Iodine cycle (SI cycle) produces hydrogen using residual heat energy from the nuclear power plant. SI cycle consists of three sections each for Bunsen reaction (Section I), H_2SO_4 decomposition (Section II), H_2SO_4 decomposition (Section III), H_2SO_4 decomposition (Section III). In Section III, distillation column for separating H_1 from H_1 (mixture of H_1 – I_2 – H_2 O) is very important, since H_1 distillation determines the efficiency of the entire process. Section III requires well–designed heat exchangers to increase energy efficiency, especially prior to a distillation column. In this work, we collected and calculated mixture properties such as density, viscosity, heat capacity and thermal conductivity required for modeling and applied a commercial simulation tool to design a heat exchanger for a feed to Section III.