Ultrasensitive uranyl ion detection using DNAzyme catalytic reaction-combined NW SERS sensor

<u>황지현</u>, 유숭민[†], 곽래근¹, 김홍기¹, 이상엽, 이경자², 이민구², 이창규², 강태준³, 김봉수¹ Department of Chemical and Biomolecular Engineering (BK21 plus program); ¹Department of Chemistry, KAIST; ²Nuclear Materials Development Division, KAERI; ³KRIBB (smyoo@kaist.ac.kr[†])

We developed a surface-enhanced Raman scattering (SERS) sensor combined with a DNAzyme-cleaved reaction for the ultrasensitive and specific detection of uranyl ion $(UO2^{2+})$. The presence of $UO2^{2+}$ in sample induces the cleavage of DNAzyme into enzyme strands and released strands, which include Raman-active molecules. The released strands bind with capture DNAs on the nanowire (NW) sensor and this complex provides SERS signal. The sensing performance of this sensor exhibits a detection limit of 1 pM and high selectivity. Furthermore, we successfully detect uranyl ion in diverse $UO2^{2+}$ -contaminated natural water. Based on these results, we anticipate that the practical usefulness of this sensor can be expanded to detect diverse toxic metal ions by applying various ion-specific DNA-based ligands to NW sensors.