Characterization of alkali metal-based dry sorbents using SnO₂ for post-combustion CO₂ capture

<u>조민선</u>, 이수출¹, 채호진, 이중범², 김재창[†] 경북대학교; ¹차세대에너지기술연구소; ²한전전력연구원 (kijchang@knu.ac.kr[†])

Titanium dioxide (TiO₂) and gamma alumina (γ-Al₂O₃) are commonly used as a support or an additive material to develop the ideal alkali metal-based sorbent. However, these sorbents have disadvantages in terms of thermal stability and cyclic CO₂ capture of the sorbent. To overcome these problems, new alkali metal-based sorbents were developed by impregnation of SnO₂ as a support with K₂CO₃ or Na₂CO₃. In addition, the CO₂ sorption and regeneration properties of these alkali metal-based sorbents were investigated at a low temperature range between 60°C and 200°C. And the structure changes of the potassium-based sorbents were investigated by power X-ray diffraction. These sorbents show high CO₂ capture capacities (89–113.7mg CO₂/g sorbent). Furthermore, these high CO₂ capture capacities are maintained during multiple cycles even at a low regeneration temperature of 200°C.