The Calcination Effect of Hydrotalcite-like Catalyst for Hydrogenolysis of Glycerol to 1,2-Propandiol

<u>이상용</u>^{1,2}, 정재선^{1,3}, 양은혁^{1,3}, 이승환⁴, 이관영², 문동주^{1,3,†} ¹KIST; ²고려대; ³UST; ⁴J&K Heaters (dimoon@kist.re.kr[†])

Glycerol is obtained as a by–product in Biodiesel Synthesis and it can be converted into many value–added chemicals. One such reaction is 1,2–propanediol(1,2–PDO) obtained by hydrogenolysis of glycerol with a base catalyst. In the present work, effect of calcination is studied. The hydrotalcite–like catalysts were prepared by impregnation method and calcined at 300 °C, 500 °C, 900 °C and 1100 °C. All prepared catalysts were characterized by N_2 physisorption, XRD, SEM, TPR and TEM. Hydrogenolysis of glycerol reaction was carried out in fixed bed down flow reactor at 190 °C, 25 bar pressure. With 900 °C calcined Cu/MgAl catalyst 60 % glycerol conversion with 90 % selectivity towards 1,2–PDO was observed. The results shows that the structure and metal–support properties of hydrotalcite are governed by calcination temperature. And, it affects hydrogenolysis of glycerol reaction.