The Comparison of Calcination Atmosphere of LaNiO₃ perovskite Precursor and Its Application on Steam CO₂ Reforming of Methane

<u>양은혁</u>^{1,2}, 노영수², 임성수², 안병성², 문동주^{2,†} ¹UST; ²KIST (djmoon@kist.re.kr[†])

Recently, GTL-FPSO (Floating Production Storage and Offloading) process which can produce clean fuels like GTL and MeOH have received much attention. In GTL-FPSO process, reforming is one of the key technologies which can produce synthesis gas for Fischer-Tropsch synthesis. Especially, carbon dioxide reforming of methane (dry reforming) is an attractive process due to use of greenhouse gases such as $CH_4 \& CO_2$. Perovskite oxides are well known materials for the use of various fields including catalysts. In this work, the effect of calcination atmosphere ($N_2 \&$ air) of LaNiO3 perovskite precursors was investigated. It was found that N_2 calcined perovskite precursor showed Ni/La₂O₃ phase. On the other hands, Air calcined perovskite precursor showed LaNiO₃ type perovskite phase. These two materials were applied for the dry reforming of methane.