Synthesis of highly refractive film including surface modified ZrO₂ nanoparticles with silane coupling agent

<u>강기주</u>^{1,2}, 김희정^{1,3}, 유중환^{1,†} ¹한국세라믹기술원; ²경상대학교; ³성균관대학교 (jwyoo@kicet.re.kr[†])

 ZrO_2 is useful material as high refractive index for providing high performance optical films. But ZrO_2 -mixed organic resin is hard to coat on film uniformly, because ZrO_2 has bad dispersion problem. So it is hard to expect improvement of films refractive index. Therefore, the surface modification with hydrophobic agent is essential for dispersing ZrO_2 nanoparticles uniformly into the organic resin. In this study, silane coupling agents modified ZrO_2 nanoparticles are synthesized using zirconium n-propoxide, benzyl alcohol, and then modified with two kinds of bifunctional silane coupling agents such as, Methacrylopropyltrimethoxysilane(MPS) and Decyltrimethoxysilane(DTMS). The zirconia particles consisted of intrinsic ZrO_2 crystallite and 5–10 nm sizes. The modified zirconia particles show good chemical bonding between ZrO_2 and silane coupling agents so, hydrophobicity enhanced in water floating test before modified samples. The refractive index for sample containing modified zirconia shows 1.6 which is higher than that of before modified sample.