기체-고체 유동층에서 형태가 다른 다중벽 탄소나노튜브들의 수력학적 특성

<u>정승우</u>, 이재훈, 이동현[†] 성균관대학교 (dhlee@skku.edu[†])

다중벽 탄소나노튜브 (multi-walled carbon nanotubes; MWCNTs)의 수력학적 특성을 연구하기 위하여 직경 $0.14~\mathrm{m}$, 높이 $2.4~\mathrm{m}$ 인 기체-고체 유동층에서 실험을 수행하였다. 층 물질로 다음과 같은 3가지 형태의 MWCNTs를 사용하였다; i) N은 Nanocyl, Inc.에서 제조한 NC7000, ii) S_i 는 MWCNTs 미분의 응집체, iii) S_c 는 단일 입자와 같은 형상의 큰 entangled MWCNTs. N, S_f , S_c 의 bulk density는 각각 57, 20, $81~\mathrm{kg/m^3}$ 이다. 체를 이용하여 입도 분석한 결과, N와 S_c 의 sauter mean diameter는 각각 242와 $1203~\mathrm{\mu m}$ 이다. S_f 의 경우, 강한 응집력으로 인하여 체를 이용한 입도 분석이 불가능하였다. N과 S_f 의 유속에 따른 유동 형태는 Geldart group A입자의 유동 형태와 유사하였다. S_c 의 경우, 입도 분포가 넓은 Geldart group B입자의 유동 형태와 유사하였다. 본 연구에 사용한 MWCNTs는 공극이 매우 많기때문에 bulk density가 낮고 높은 층 팽창률을 가진다. N과 S_f 는 particulate fluidization 영역에서 각각 2.59와 3.26에 해당하는 최대 층 팽창률을 가진다. S_c 의 경우, $0.25~\mathrm{m/s}$ 의 유속에서 1.25에 해당하는 층 팽창률을 가진다. N과 S_f 는 particulate fluidization 영역에서 얻은 층 팽창률을 이용하여 Richardson and Zaki index를 계산할 수 있다. N과 S_f 의 Richardson and Zaki index는 각각 9.05와 29.94로 S_f 가 N보다 강한 응집력을 가지고 있다.