CeO₂ Nanostructure based Electrochemical Biosensor for Hydrogen Peroxide Detection

<u>모하마드니아이 모센</u>, 아자이 쿠마르 야가티, 이 택, 민준홍¹, 최정우[†] 서강대학교; ¹중앙대학교 (jwchoi@sogang.ac.kr[†])

A facile and sensitive amperometric detection of $\rm H_2O_2$ was developed based on direct electrochemistry of myoglobin immobilized on a porous $\rm CeO_2$ nanostructured film which was electrodeposited on an ITO. The ITO/CeO $_2$ Substrate Surface, characterized by scanning electron microscopy, revealed a large specific surface area with a unique nanostructure of $\rm CeO_2$ on the ITO. Electrochemical behavior of adsorbed Mb on the fabricated substrate was investigated by cyclic voltammetry and differential pulse voltammetry techniques, showing a considerable electrocatalytic performance without the presence of any electron mediator. The proposed protein-based biosensor showed linear response up to a concentration of 3 mM having a detection limit of 0.6 μ M and a response time of approximately 8 s, compared to those of other modified electrodes. Therefore results proved that, well-dispersed and high surface area of the modified electrode as well as direct electron transfer of protein could be a promising method for electrochemical biosensors. Acknowledgments: This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-04.