Adsorption and desorption of NH₃ and NO on Fe-zeolite-promoted V₂O₅-WO₃/TiO₂ catalysts

<u>이효상</u>, 김문현^{1,*} 대구대학교; ¹대구대학교 환경공학과 (moonkim@daegu.ca.kr^{*})

This study has been focused on the adsorption and desorption of NH₃ and NO on samples of a commercial V_2O_5 -WO₃/TiO₂ catalyst with a promotor of Fe-MFI with a 96% exchange level to acquire a key role of the Fe ions in lowering the extent of the production of N₂O in the selective reduction of NO by NH₃. The bare V_2O_5 /TiO₂-based catalyst after adsorption of NH₃ at 100°C following temperature-programmed desorption up to 500°C yielded a strong peak of N₂O at 375°C with a weak band near 310°C. These desorption peaks all disappeared as the titania-supported vanadia sample was promoted using the Fe-MFI, although a new N₂O peak was generated around 330°C but this peak intensity depending on the Fe-zeolite quantities became visibly reduced. These results propose that such a utilization of Fe-zeolites as a promotor in V₂O₅/TiO₂-based catalysts can significantly suppress the extent of N₂O formation in NH₃-SCR reaction.