A Relationship between Framework Properties of Zeolites and Their CO₂ Adsorption

<u>조일흥</u>, 이효상, 김문현*, 최상옥¹, 추수태¹ 대구대학교 환경공학과; ¹삼성BP화학(주) 시험연구팀 (moonkim@daegu.ac.kr*)

The framework of zeolites and their Si-to-Al ratio (SAR), surface area (S_{BET}) and pore size have been correlated with the extent of CO_2 adsorption at $25^{\circ}C$. Zeolite 13X and NaY had lower SAR values than that for ZSM-5 and SSZ-13. All zeolites used here indicated micropore sizes in the range of 4.8 - 5.5 Å; thus, they all could allow a readily access of CO_2 with a molecular size of 3.3 Å even to the micropores. The extent of CO_2 adsorption depended on the framework type of the zeoliltes as a primary parameter. In general, Zeolites with FAU framework, such as NaY and 13X, exhibited larger CO_2 uptakes, compared to the other framework types. It seems that the SAR and S_{BET} could also result in difference in the adsorption capacity between the zeolites. SSZ-13, SAPO-34 and 13X possessed a comparable S_{BET} value each other; however, these zeolites showed visibly different CO_2 uptakes and this variable is minor in effecting the adsorption performance. Therefore, the framework basicity of zeolites, that increases as a SAR value becomes low, may determine significance in CO_2 adsorption.